Proximal Quasi-Newton Methods for Convex Optimization
نویسندگان
چکیده
In [19], a general, inexact, e cient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of this method by establishing a simple stopping criterion for the subproblem optimization. Furthermore, we consider an accelerated variant, based on FISTA [1], to the proximal quasi-Newton algorithm. A similar accelerated method has been considered in [7], where the convergence rate analysis relies on very strong impractical assumptions. We present a modified analysis while relaxing these assumptions and perform a practical comparison of the accelerated proximal quasiNewton algorithm and the regular one. Our analysis and computational results show that acceleration may not bring any benefit in the quasi-Newton setting.
منابع مشابه
Adaptive Fista
In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class of SR1 (identity minus rank 1) proximal quas...
متن کاملProximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates
In [19], a general, inexact, efficient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of...
متن کاملEfficient evaluation of scaled proximal operators
Quadratic-support functions [Aravkin, Burke, and Pillonetto; J. Mach. Learn. Res. 14(1), 2013] constitute a parametric family of convex functions that includes a range of useful regularization terms found in applications of convex optimization. We show how an interior method can be used to efficiently compute the proximal operator of a quadratic-support function under different metrics. When th...
متن کاملProximal quasi-Newton methods for nondifferentiable convex optimization
This paper proposes an implementable proximal quasi-Newton method for minimizing a nondifferentiable convex function f in <n . The method is based on Rockafellar’s proximal point algorithm and a cutting-plane technique. At each step, we use an approximate proximal point p(xk) of xk to define a vk ∈ ∂ k f(p(xk))with k ≤ α‖vk‖,where α is a constant. The method monitors the reduction in the value ...
متن کاملOn the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.03081 شماره
صفحات -
تاریخ انتشار 2016